Odborné články

Vytápění biomasou v rodinných domcích s účinností přes 110% - sen a nebo realita?

Současné špičkové kotle na dřevo dosahují účinnosti od 80 % do maximálně 88 % při splnění emisní normy 3. třídy dle ČSN EN 303-5. Takové kotle splňují i limity pro ekologicky šetrný výrobek (v ČR dle směrnice č. 13/2002 MŽP ČR) a lze na jejich pořízení obvykle poskytnout v mnoha evropských zemích státní finanční podporu (v ČR z SFŽP). Nikdo si však dosud plně neuvědomil, že vyžadované parametry platí pouze při trvalém provozování těchto kotlů v úzké oblasti jejich jmenovitého výkonu a to ještě jen s doporučeným kvalitním palivem.

Skutečnost v praxi je však diametrálně jiná. Konkrétně např. každý běžný rodinný dům 6+1 v Praze musí být projektován na minimální celodenní průměrnou venkovní teplotu -12 °C, ze které vycházejí jeho tepelné ztráty ve výši cca 10 kW za hodinu. K tomu je však třeba přičíst přirážku na zátop ve výši 30 až 50% (pro případ, že se obyvatelé vrátí ze zimní dovolené do nevytopeného domku), a ještě dalších 3 až 5 kW na příkon výměníku pro teplou užitkovou vodu. Kotel s nejbližším vyšším výkonem tak vychází na min. 20 kW, většina výrobců však obvykle nabízí tyto kotle až od výkonu 25 kW výše.

A jaká je skutečná potřeba tepla tohoto domku? V Praze je za posledních 40 let průměrná teplota v zimních měsících kolem 0 °C, v celé topné sezoně (cca 250 dní) pak několik stupňů nad nulou a ani v letošní zimě, kdy padaly 40leté rekordy, nikdy průměrné teploty nedosáhly oněch projektovaných -12 °C. Z toho všeho tedy plyne, že na jmenovitý výkon může být tento, dle závazných předpisů dimenzovaný kotel provozován maximálně jeden den za tisíc let (k tomu je totiž třeba se trefit do kombinace, že se obyvatelé vrátí ze zimní dovolené do vymrzlého domku právě v den, kdy průměrná teplota bude -12 °C, a ta je v Praze jednou za sto let, a k tomu ne každý obyvatel lyžuje)! A pouze v tento jediný den bude tento kotel pracovat s onou vysokou účinností a výbornými emisemi, pokud ovšem bude spalováno kvalitní suché dřevo s vlhkostí pod 20 %, což je většinou též jen iluze.

Z výše uvedeného plyne, že v reálném životě takto dle předpisů správně dimenzovaný kotel pracuje v průměru pouze na 20 až 25 % svého jmenovitého výkonu (pouze 5 kW místo 20 až 25 kW), tedy s účinností rozhodně pod 50 % (při nižších teplotách ohniště a nedostatku spalovacího vzduchu v důsledku přivření regulační klapky se účinnost každého kotle rapidně snižuje) a s emisemi nejméně o řád horšími (i kvalitní suché dřevo při nedokonalém spalování dehtuje, a když k tomu ještě přičteme, že v tomto kotli „bez problémů“ shoří i vlhké nekvalitní, ale podstatně levnější dřevo a často i výhřevný kelímek od jogurtu, který je navíc zdarma, tak o tom, co vychází z komína nelze mít žádné iluze)! Je proto tragickým omylem, že právě na takové kotle vyplácejí mnohé evropské země, včetně ČR, ještě státní dotace!

Lze tedy vůbec spalovat biomasu v rodinných domcích s vysokou (nejlépe dvojnásobnou) účinností a nízkými emisemi a dokonce levnějšími zařízeními a navíc při dobrovolném dodržování vysoké kvality paliva bez nutnosti sankcí přísných zákonů, vyhlášek a norem?

Šokující odpověď zní ano, ještě více však šokuje, že je to možné právě jen v teplovodních krbech! Krby totiž nemají z dřívějška zrovna dobrou pověst úsporných tepelných spotřebičů, když u těch otevřených se účinnost spalování pohybovala kolem 10 až 20 %, u uzavřených pak až 60 %, a ani u těch nejnovějších teplovodních při jmenovitém výkonu nepřesahuje 80 % (např. AQUATONDO 29, z toho 60 % do vody a 20 % sáláním). Jejich nevýhodou navíc je, že je nelze v praxi provozovat nepřetržitě, neboť po pár hodinách vyhasnou a celou noc nikdo nebude chodit přikládat. Tato nevýhoda se však rázem změní ve výhodu, pokud krb topí do akumulačního zásobníku – u krbu to však není, oproti kotlům, otázka volby, ale přímo nutnosti. Tím pádem musí být zajištěno, že během několika hodin se dostatečně vyhřeje dům i akumulační zásobník, takže nejen že krb oproti kotlům pracuje trvale na jmenovitý výkon (tedy s vysokou účinností 80 % a s nízkými emisemi), ale může být dokonce bez problémů předimenzován ještě více jak kotel (geometrie většího ohniště oproti kotli navíc zajišťuje i vyšší účinnost).

Samozřejmě že s akumulací (a tedy též trvale při jmenovitém výkonu) může být provozován i běžný kotel, kdo by ale podle budíku (jinak nepozná, kdy má přiložit) chodil každou hodinu (na plný výkon palivo v něm shoří rychle) přikládat do sklepa (neboť do obýváku si kotel nedá) otýpku štípaného dřeva, když do krbu stačí jen několikrát za večer dle potřeby (což včas přes skleněná dvířka vidí) přiložit půlmetrová nerozštípaná polena. A to nemluvíme o ekonomické stránce věci, kdy akumulační nádrž stojí totéž co kotel a zaplatila by se tak až po mnoha letech a zde, oproti krbu, není nezbytná, takže žádný ekonomicky uvažující obyvatel to neudělá. Navíc krbové soustavy oproti kotlům je nutno provozovat s menším tlakem, což ale paradoxně umožňuje použití nízkotlakých akumulačních zásobníků, které jsou podstatně lehčí a levnější.

Další procenta účinnosti získáme u krbu tím, že zapomeneme na základní topenářskou zásadu a vynecháme termostatický trojcestný ventil, který má zajišťovat teplotu vratné vody do kotle minimálně 60 °C, aby v něm nedocházelo ke kondenzaci vody a tím k nízkoteplotní korozi. Tato zásada s určitostí platí jak pro kotle na uhlí (kde navíc díky síře v uhlí tam vzniká kyselina sírová, která záhy zničí kotel), tak pro kotle na dřevo (které by při nedostatku vzduchu dehtovaly), ale vůbec už neplatí pro krby a je proto s podivem, že si toho dosud nikdo nevšiml a ze setrvačnosti se vždy tento ventil používá i u nich. Krby totiž na rozdíl od kotlů pracují vždy s výrazným přebytkem vzduchu (nelze je totiž zcela utlumit přiškrcením vzduchu jako kotle), tedy s lambdou (udávající přebytek spalovacího vzduchu) kolem 3, což způsobuje, že rosný bod jejich spalin je v každém případě pod teplotou 30 °C, takže vůbec není nutné se obávat nějaké kondenzace. Zatímco u normálního kotle tak dole vtéká vratná voda o teplotě 60 °C a nahoře vytéká 90 °C, tak u krbu může dole vtékat vratná voda z akumulačního zásobníku 30 °C a nahoře vytékat teplá 70 °C. To má za následek nejen vyšší výkon krbového výměníku (vyšší teplotní spád), ale především vyšší vychlazení spalin na výstupu z krbu (při stejném výkonu krbu, tedy při ohřátí vody o 30 °C dokonce jen 60 °C místo 90 °C u kotle) a tím podstatné zvýšení účinnosti o cca 10 % na úkor komínových ztrát.

Tento proces však můžeme u krbů ještě prohloubit. Oproti kotlům mají totiž kouřovou komoru a do ní je možné vložit další výměník, a vratnou vodu vést nejprve do něj a až z něj pak do krbu. Tím se kouřové plyny dostanou v tomto výměníku do kontaktu s vratnou vodou o teplotě dokonce jen kolem 40 °C, čímž dojde k podstatnému zvýšení účinnosti krbu o dalších 10 %. Sálavá složka se tím zároveň sníží na 15 %, takže nedochází k přetápění obývacího pokoje. Při použití kaskády dvou výměníků se lze tak dostat dokonce až na teplotu vody 35 °C z výstupu tohoto výměníku a na celkovou účinnost tohoto krbu až přes 95 %.

Další zisky vznikají díky tomu, že je krb umístěn vždy ve vytápěném prostoru a ne ve sklepě, takže oproti kotli využijeme plně i jeho ztráty konvexí (prouděním, tedy nejen sáláním přes sklo), což jsou ještě další 2 %, která by jinak zůstala bez užitku ve sklepě. Abychom se však dostali na účinnost 100 %, museli bychom umět vychladit spaliny na 25 °C, a to přes veškerou snahu v praxi nelze, takže 3 % nám zmizí komínem. Přes účinnost krbu 97 % se tak již ale v žádném případě dostat nemůžeme.

A kde je tedy těch slíbených posledních 13 % do 110 % ? V palivu, a nepůjde již o účinnost krbu (která u žádného zařízení nemůže být vyšší než 100 %), ale o stupeň využití paliva (obdobně, jako tento pojem používáme u kondenzačních plynových kotlů). Zatímco při spalování zemního plynu k dalším tepelným ziskům využíváme nově i kondenzačního tepla spalin (tím, že vysrážíme ze spalin vodu, která vznikla chemickým procesem při jeho spalování), u krbů tento jev využít nemůžeme – jednak spalováním suchého dřeva tolik vody nevzniká, ale naopak vznikají jiné produkty, které by vedly k masivnímu zanášení krbu a výměníků (dehet, popel, saze). V tom případě naší snahou tedy musí být, především nevnášet do procesu spalování další vodu, kterou bychom nejprve museli ohřívat na 100 °C a pak ještě odpařit a odvést do komína, to vše za velkých a zbytečných tepelných ztrát.

A zde má dřevo oproti ostatním palivům jednu specifickou vlastnost – totiž že o jeho výhřevnosti si do určité míry může rozhodovat jeho uživatel sám. Výhřevnost dřeva se totiž běžně uvádí při jeho vlhkosti kolem 25 % (za rok po kácení, když syrové má kolem 50 %), kdy má výhřevnost kolem 13 MJ/kg. Pokud toto dřevo necháme však schnout ještě další rok, dostaneme se na 15 % vlhkosti a tím zvýšíme jeho výhřevnost na 15 MJ/kg, tedy o 15 % . A tak se konečně tedy bez jakékoliv další práce (chce to jenom si počkat) dostaneme na onu v nadpisu avizovanou účinnost (přesněji stupeň využití paliva) přes 110 %.

A proč to tak tedy nedělají i majitelé kotlů? Jak jsme již uvedli výše, v kotlích shoří všechno včetně mokrého dřeva, takže jejich uživatelé si s vlhkostí dřeva hlavu nelámou (a na předpisy kašlou), neboť i když má menší výhřevnost, je zase levnější, tak proč by kupovali dražší suché a nebo rok čekali. Krbař však na vybranou nemá – pokud totiž chce i po hodině topení ještě vidět skrz sklo na oheň (a kvůli tomu si krb pořídil), nezbývá mu, než dobrovolně, bez nějakých nařízení, topit výhradně suchým dřevem (o kelímcích od jogurtů nemluvě), jinak se mu sklo velmi rychle začoudí. A navíc topit jen kvalitním listnatým dřevem (to především kvůli hluku z praskání), které je bez pryskyřic, takže jeho spalováním vznikají čistší emise než u jehličnatého dřeva (při spalování pryskyřic vznikají navíc i aromatické uhlovodíky).

Z výše uvedeného plyne, že pro efektivního spalování zdaleka nejsou nejdůležitější jen technické parametry kotle (a už vůbec ne ty při jmenovitém výkonu, které dosud jako jediné jsou při přidělování dotací uvažovány a kontrolovány), ale především jeho roční stupeň využití, potenciál možností jeho úprav a zapojení, dále jeho umístění, kvalitní obsluha a v neposlední řadě i dobrovolné dodržování kvality a druhu paliva. Pokud by se podařilo dostat do povědomí všech majitelů rodinných domků, chat a chalup tyto výše uvedené principy, které by se podpořily dosavadními státními příspěvky na kotle, dosáhlo by se bez jakýchkoliv dalších finančních nákladů či donucovacích legislativních prostředků minimálně poloviční úspory paliv z obnovitelných zdrojů při podstatném snížení škodlivých emisí. A estetický prožitek z plápolajícího ohně by byl ještě bonusem navíc.

A to ještě není vše! Toto zařízení je totiž ještě navíc roznětkou pro další obrovské úspory tepelné energie ze synergického efektu – kdo si totiž pořídí teplovodní krb, musí si pořídit i akumulační zásobník s výměníkem pro teplou užitkovou vodu. Tím však má již zároveň zaplacenou a nainstalovanou (tedy jaksi zdarma) právě tu nejdražší část pro solární ohřev teplé užitkové vody a pro solární přitápění na jaře a na podzim. Stačí tedy už jen připojit ke stávajícímu zařízení levné sluneční kolektory s jednoduchou regulací a vše je hotovo a úspory energií se rázem ještě zdvojnásobí, takže výsledná spotřeba energií bude pouze čtvrtinová!

A to nejlepší nakonec: Pokud si někdo i nadále ještě myslí, že v tomto našem návrhu jde jen o neskutečný sen, o pouhou teorii a ne realitu, stačí přijet se podívat na toto zařízení do rodinného domku v Praze 4 – Hrnčířích, kde bezproblémově funguje celou zimu dle výše uvedených zásad, a dokonce si může dotykovým teploměrem vše osobně přeměřit (z těchto důvodů je zatím ještě vše odkryté a nezaizolované – viz foto). A navíc uvidí i ten zázrak, jak se do běžné garáže o rozměrech 3 x 5,5 metru vejde nejen akumulační zásobník pro 2500 litrů vody o průměru 1,4 m, ale i nadále velký automobil s délkou přes 5 metrů. Zásobník samozřejmě využívá jednoduché a levné zařízení k vrstvení vody a naopak nepoužívá dnes tolik doporučovanou, ale nesmyslnou, komplikovanou a drahou ekvitermní regulaci topné vody. Uvidí současně i to, jak lze zvýšit tepelnou kapacitu tohoto akumulačního zásobníku zdarma o 25 % jeho bezproblémovým provozováním při teplotách až 105 °C (zatímco normální kotle pracují max. s 90 °C), či jak lze nahradit obrovské a drahé expanzní nádoby (dle normovaného výpočtu přes 440 litrů při zvětšení objemu vody o 117 litrů) jen těmi nezbytně nutnými a levnými pro 120 litrů. A naší výhodou je, že můžeme lehce a s jistotou porovnat rozdíly oproti klasickému zařízení a zapojení, které dodala renomovaná firma a které bylo provozováno ve stejném objektu v loňském roce, a které spotřebovávalo dvojnásobek paliva. Nyní stačí pouhých 8 hodin topení v krbu na jmenovitý výkon cca 30 kW (do vody, díky dodatečným 2 výměníkům) naakumulovat dostatek energie, takže další den ani při těch největších mrazech není třeba již v krbu topit.

Efekt předkládaného projektu pro úspory energií a snížení škodlivých emisí včetně CO2 je ve své komplexnosti skutečně obrovský a nemá v současnosti v celé Evropě obdoby. Přitom jeho realizace je možná okamžitě a navíc ani nepředpokládá žádné další výdaje států.

Tento článek byl publikován v rámci spolupráce redakce časopisu Alternativní energie a CZ Biom.

Článek: Tisknout s obrázky | Tisknout bez obrázků | Poslat e-mailem

Související články:

Možnosti využití biomasy
Kotelny na biomasu pro obce a města
Zkušenosti s provozem kotle na dřevoplyn v rodinném domku (1)
Zkušenosti s provozem kotle na dřevoplyn v rodinném domku (2)
Zkušenosti s využitím dřevní biomasy jako obnovitelného a alternativního zdroje
Využití biomasy pro lokální a centrální vytápění

Zobrazit ostatní články v kategorii Spalování biomasy

Datum uveřejnění: 14.4.2006
Poslední změna: 13.4.2006
Počet shlédnutí: 142972

Citace tohoto článku:
MĚCHURA, Petr: Vytápění biomasou v rodinných domcích s účinností přes 110% - sen a nebo realita?. Biom.cz [online]. 2006-04-14 [cit. 2024-03-29]. Dostupné z WWW: <https://biom.cz/czt/odborne-clanky/vytapeni-biomasou-v-rodinnych-domcich-s-ucinnosti-pres-110-sen-a-nebo-realita?sel_ids=1&ids[x5858c1aee08ada8b0e0b1c42476203e1]=1>. ISSN: 1801-2655.

Komentáře:

23 Apr 2006 12:26

vytápění krbem - odpověď

Autor: Mchura www:

Vážený pane inženýre Lyčko, Jsem rád, že ve svém posledním komentáři jste konečně zamířil, slovy myslivců, přímo na komoru, v tomto případě spalovací, a jsem s Vámi i zajedno v tom, že otázka emisí a kondenzace je zde to nejdůležitější. Pokud byste preferoval maximální stručnost, mohl bych využít vaší přihrávky na smeč a pouze suše konstatovat, že jestliže dle Vás kondenzace spalin v krbu začíná již min. na 160 oC, a přesto prakticky všichni výrobci kotlů na dřevo klidně pouští do nich vodu o teplotě 60 oC, tedy o celých 100 oC nižší a nemají přitom žádné obavy z poškození kotle kondenzací, tak když já do krbu pouštím vodu 30 oC, tedy jen o 30% chladnější, tak už v tom nemůže být tak tragický rozdíl. Zvláště když tuto vodu pouštím nejdříve do levných a snadno vyměnitelných výměníků ze silnostěnných trubek z korozivzdorné oceli a až pak z nich ohřátou na min. 50 oC do krbového výměníku z kotlového plechu. A je vymalováno, mohu jít spát. Protože však tvrdíte, že komplexní vyhodnocení mého příspěvku by vydalo na menší knížku, tak se klidně do toho pusťme, dnes alespoň do první kapitoly, kterou si dovolím nazvat dle obsahu Vašeho komentáře: Kapitola I. Procesy spalování v krbu. Nejprve bych zde rád deklaroval, že přestože plně souhlasím se vším, co jste napsal ve druhém odstavci svého komentáře a nemám žádný důvod o tom pochybovat, tak i nadále trvám též a svých stanoviscích. Jak je to možné? Na to Vám dá odpověď následující příběh: Dejme tomu, že pan Měchura si koupil nový mercedes a všude se chlubí, jaké má výborné zrychlení na 100 km/h za 9,6 sekundy. Soused, pan Lyčka, se zdravě naštve, koupí si bavoráka, který má výrobcem deklarované zrychlení na 100 km/h pod 9 sekund a vyzve pana Měchuru na souboj. A co se nestane – Lyčkův bavorák nestačí Měchurovu mercedesu! Jako racionálně uvažující odborník si pan Lyčka nejdříve ověří v akreditované stanici technické kontroly, zda jeho vůz skutečně má výrobcem deklarované zrychlení na 100 km/h pod 9 sekund, a když mu to potvrdí, tak dříve, než šlápne do měkkého a nařkne pana Měchuru z čipování motoru, vyzve ho, aby si i on dal prověřit svůj vůz do téže STK. Výsledek ale i v tomto případě potvrdí správnost údajů výrobce! Ještě jednou se tedy postaví oba vozy na startovní čáru, motory zaburácí a obě auta vyrazí – a opět od startu až do maximální rychlosti obou vozů 220 km/h, tedy během 33 sekund Měchurův mercedes nechává Lyčkův bavorák za sebou. Až – až na jedinou výjimku - pouze na jedinou sekundu, mezi 99 a 101 km/h je Lyčkův bavorák o kousek před Měchurovým mercedesem. Jak to? Celý vtip je totiž v tom, že Měchurův mercedes musí řadit na trojku již při 99 km/h (a zdržet se tak právě o tu sekundu, po kterou řadí a motor netáhne, takže ho bavorák předhoní), kdežto Lyčkův bavorák až ve 101 km/h. A tak, i když právě jen tato jediná krátká výjimka potvrzuje výrobcem udávané parametry, v praxi bude situace úplně jiná – po 97% doby bude vítězit mercedes a jen po 3% doby bavorák. Ale protože se státní dotace Státního fondu zrychlení vyplácejí jen opravdu „tzv. kvalitním“ vozům s tabulkovým zrychlením na 100 km/h pod 9 sekund, dostane je pouze bavorák. A všichni lidé si proto začnou kupovat bavoráky, a to v zájmu vyššího zrychlení! Opravdu je to tak v pořádku? A vo vo vo vo to právě mi jde. Proto na rozdíl od pana ing. Lyčky já vůbec nepochybuji o jeho odborných argumentech, které napsal ve svém druhém odstavci, a které nepochybně odpovídají určitému, přesně definovanému stavu spalování. Pokud se ale v praxi vlivem mnoha okolností skutečné běžné spalování od toho, ze kterého vycházel on či jiná teorie, více či méně liší, tak každý rozumný odborník musí, ač mnohdy dost nerad, připustit, že uváděné argumenty pana ing. Lyčky také přestávají více či méně platit a mohu mít, za mnou udávaných podmínek, dokonce pravdu i já, zvláště když mi dává za pravdu i praktické ověření mých nápadů (a v tom případě dokonce na to teoreticky ani nemusím být odborníkem). Proto, dříve než se pustím do hlubšího rozboru jím uváděných argumentů, tak si klidně podřežu i větev, na které sedím, prohlášením, že emise jsem u svého krbu zatím neměřil a lambdou (udávající přebytek spalovacího vzduchu) jsem se v uplynulých 20 letech zabýval především u spalovacích motorů, byť za stejným účelem – zvýšení účinnosti. A přestože v této oblasti je tato otázka již dokonale propracovaná (díky miliardám dolarů, které na tento výzkum vynaložily prakticky všechny významné automobilky, neboť to pro ně je otázkou přežití), tak i zde je veřejnost trvale mylně informována např. o tom, že tyto motory, využívající přímého vstřiku pro vrstvení paliva (z toho jejich název FSI) jsou úspornější. Tabulkově při metodice EHK (město, 90 km/h a 110 km/h) to tak samozřejmě platí, dokonce až o 1 l/100 km – ale právě jen pro toho, kdo tak také v praxi jezdí, tedy zhruba s polovičním výkonem motoru. Kdo jezdí jako já spíše na plný plyn, tedy využívá pro spalování celý objem válce, neušetří vrstvením ani gram paliva a tudíž se zcela klidně obejde i bez vstřikování, tedy i jen se starým dobrým karburátorem. Uvádím to zde proto, že výsledkem těchto chybných interpretací je, že podobně jako u kotlů, i zde si většina lidí kupuje vlastně úplně něco jiného, než původně chtěla. Obrovské zkušenosti automobilek s výzkumem lambdy u spalovacích motorů bohužel nejde využít u kotlů na dřevo, byť v obou případech jde o zvyšování účinnosti či snižování emisí. Zatímco u motorů se dávkuje palivo do vzduchu, tak u běžných kotlů na dřevo je tomu bohužel naopak, a dřevěné palivo navíc není homogenní s trvale přesně definovanými parametry, jaké má benzín. Celkem slušně je sice též zpracován vliv lambdy na teplotu začátku kondenzace spalin u plynových kondenzačních kotlů (neboť právě na ní závisejí), ale i zde příslušné tabulky a grafy pro zemní plyn je nutno brát s dostatečnou rezervou, neboť nevíte, pro jaký zemní plyn byly dělány – pro ten z Ruska nebo z Norska? Oba se dost významně liší ve složení i výhřevnosti (a navíc se různě dle aktuálních zásob míchají a proto musely distributoři plynu na nových fakturách přestat uvádět jeho spotřebu v kubících a přejít na kWh), a tedy určitě i v závislosti kondenzační teploty jeho spalin na lambdě. A teď si to porovnejte se spalnými plyny ze dřeva, jejichž složení je ovlivňováno navíc druhem dřeva, obsahem pryskyřic v něm a jeho vlhkostí, dále i geometrií spalovací komory, délkou plamene a teplotou spalování a jistě ještě spoustou dalších parametrů. Proto veškerá teorie zde platí pouze za určitých specifických podmínek a pro určité dřevo, které jste právě spaloval, tedy se všemi v úvodu uvedenými důsledky, takže prosím připusťte, že situace v běžné praxi může být úplně jiná. A navíc spalování v krbech donedávna vlastně ani pořádně nikoho nezajímalo, takže do tohoto výzkumu šlo opravdu minimum finančních prostředků. Proto se o tom vlastně ví pouze obecně to, co jste uved, ani já jsem se o tom před rokem o mnoho více nedozvěděl ani z odborné literatury, natož od odborníků, i když pravda, ty z BIOM jsem, nechtíc, vynechal, ale možná, že to bylo naopak dobře, protože bych se býval do toho třeba vůbec nepustil. Obecně svými tvrzeními v komnetáři tedy jen potvrzujete to, co jsem ale já nikdy a ani nikde ve svém článku nezpochybňoval (ba naopak na to ve svém článku několikrát upozorňuji), totiž že: 1) pokud bude kotel na dřevo pracovat v oblasti svého jmenovitého výkonu a bude spalovat stejně kvalitní a suché palivo jako krb, tak bude v souladu s Vašimi argumenty pracovat samozřejmě s vyšší účinností (o cca 5%) a s nižšími měrnými emisemi (vztaženými na jednotku spáleného paliva) než krb. Byť ty nejnovější teplovodní krby jsou již dostatečně utěsněné, takže se co do množství spotřebovávaného vzduchu už příliš od běžných kotlů na dřevo neliší, takže Vámi uváděné ztráty nedopalem a naředěním nejsou již tak tragické (viz poměrně malé rozdíly v účinnosti v řádu procent, které se budou pravděpodobně dále ještě snižovat, pokud se bude konstrukcím krbům věnovat minimálně staejná pozornost, jaká se věnuje po léta kotlům). Já k tomu jen dodávám, že: 2) Protože ale v běžné praxi 99% kotlů na dřevo pracuje pouze na zlomek svého jmenovitého výkonu a spalují obvykle přitom navíc méně kvalitní palivo, tak jejich výsledná účinnost je oproti krbům (které dobrovolně pracují stále v oblasti jmenovitého výkonu a s kvalitním palivem) skoro poloviční a emise mají až o řád horší. 3) A pokud vybavíme tyto krby (jako já) dodatečnými výměníky a odstraníme u nich termostatický trojcestný ventil udržující teplotu vratné vody na min. 60 oC, pak dokonce předčí ve své účinnosti i ty kotle, pracující v oblasti jmenovitého výkonu a se stejně kvalitním palivem, přičemž měrné emise sice zůstanou na původní úrovni, tedy jen o trochu horší než u kotlů, přesto ale řádově lepší než u většiny kotlů v běžné praxi. A tato svá tvrzení opírám, vzhledem k pouze obecně a nejednoznačně zpracované teorii, především o mé osobní dvouleté praktické zkušenosti za rozmanitých podmínek. Ani já jsem totiž původně vůbec nepochyboval o tom, že nelze jít pod teplotu vratné vody 60 oC, takže i když z původního zapojení f. Solarpower, se kterou jsem se musel po prvním roce provozu rozloučit, mi nezbylo nic, přesto jsem i já ve svém novém zapojení ten trojcestný ventil původně ponechal. A protože jsem i já párkrát viděl u kotlů na uhlí kapky zkondenzované vody, když jsem kdysi do nich přikládal, tak jsem je s obavami vyhlížel i na stěnách teplovodního krbu, když při zatápění do něj přitékala voda jen 30 oC teplá z AKUnádrže. A když ne a ne je objevit, přestože je tam oproti kotlům výborně vidět, snažil jsem se jim pomoci i tím, že jsem otevřel zimní zahradu a vychladil ze zadu vodu v krbu na pouhých 5 oC a zatopil. A ono opět nic! Teprve pak jsem nejprve nechal vymontovat ten trojcestný ventil, a když jsem viděl, jak mi klesla spotřeba dřeva a nádrž se rychleji vytápěla, nechal jsem si vyrobit i první trubkový výměník (6 bm trubky), a když jsem si změřil, že mi šetří přes 12% paliva, tak jsem si nechal vyrobit nad něj ještě druhý (též 6 bm trubky), který, ač nad tím prvním, má dokonce větší výkon (15%, patrně díky lepší geometrii). A když se podívám na trubky výměníku, žádné stopy koroze tam po kondenzátu z Vámi uváděné neobyčejně agresivní kyseliny octové (a to jsem topil celou zimu jen tvrdým dřevem!) zatím neshledávám, a ani jí tam necítím (byť jsem na ní citlivý, ani ne tak kvůli tlačence s cibulí, ale kvůli acetátovým silikonovým tmelům, při jejichž vytvrzování také vzniká). A i kdyby, finanční návratnost těchto výměníků mne vyšla na max. 2 roky, a lze je snadno vyměnit, takže není co řešit. Jak je to možné, když Vaše teorie říká, že to možné není? Buď jsou jiné podmínky, které ty kondenzační podmínky pěkně rozhodí, nebo ta kyselina octová nemá ráda saze, nebo ty saze s dehtem částečně tepelně izolují výměníky, takže snižují povrchovou teplotu, nebo spaluji sice tvrdé dřevo, ale to nesprávné (letos především dub, o němž už naši dávní předci např. věděli, že železný hřeb v dubovém dřevě díky vznikajícím agresivním solím rychle zkoroduje a vypadne, ale přesto některé truhly s nimi vydržely dodnes), nebo to dřevo nemá tu správnou vlhkost, nebo mám špatný vzduch či přisávám radioaktivní radon od podlahy nebo také od každého kousek či všechno dohromady. Ale abych Vás uklidnil, např. vývojáři halogenových žárovek si také dlouho mysleli, že tzv. halogenový cyklus, který vrací usazený wolfram ze skleněné baňky zpět na vlákno, může fungovat pouze tehdy, když teplota stěny baňky má minimálně teplotu 300 oC – ale naštěstí ono to funguje dnes i v žárovkách kapesních svítilen, tedy při teplotách pouhých 30 oC, tedy dokonce o řád nižších! Ale abych nenasazoval jen na žárovkáře, tak obdobně si zase všichni hlavní výrobci zářivek před 20 lety mysleli, že u kompaktních zářivek je dle teoretických poznatků (a mnoha tisíců ověřovacích pokusů) zcela nezbytné ponechat tzv. chladné zóny, kde musí nutně docházet k potřebné kondenzaci rtuťových par (to jsou ty části za spojením paralelních trubiček u starších zářivek), a dokonce si to i nechali patentovat, což se ale ukázalo jako hrubá chyba, neboť ostatní výrobci se museli bez těchto chladných zón obejít – a ejhle, v současnosti to jde všude i bez nich a všichni výrobci místo pracného spojování trubiček je již pouze ohýbají a na chladné zóny zcela kašlou. Jo, šedivá je každá teorie, zelený strom života! Nicméně se těším i na další kapitoly, jistě jich bude ještě spousta, když „sáhodlouhé diskuse se dají vést o jakékoliv větě z mého článku“, jak píšete, a čtenáři se jistě při tom i pobaví. I když já (a jistě i čtenáři) by mnohem raději uvítali, kdybyste své bohaté znalosti z tohoto oboru věnoval raději do služeb krbů, než proti nim bojoval, neboť jen tím může biomasa, za kterou přece také kopete se mnou, mnoho získat. Na vzájemnou spolupráci nejen při psaní brožurky se těší Petr Měchura
Odpověď


ilustrační foto ilustrační foto ilustrační foto ilustrační foto ilustrační foto